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approximation showed an error of 7.5%,. The implicit
Runge-Kutta deviated by only 0.5%, from the explicit method
(Fig. 2).

Conclusion

The proposed method has been shown to be as accurate as
the explicit Runge-Kutta. Unlike in the Runge-Kutta, the
time increment is not dependent on the fineness of the mesh.
In the example given, the implicit method was shown to
execute four times faster than the explicit method with no
significant difference in accuracy.

The implicit method combined with a Runge-Kutta inte-
gration on the surface conditions also has been shown to be
significantly more accurate then the straight backward dif-
ference. In the example given there was no significant in-
crease in execution time for the new method when using an
equivalent compute interval.

The proposed method can be extended easily to composite
materials and a variable mesh size. Also, the same method
can be applied to the case with two exterior radiating surfaces.
It should be possible to extend the method to two- and three-
space dimensions by using a modification of the Douglas-
Rachford method similar to that proposed by P.L.T. Brian.?
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Some Plane Quadrilateral «Hybrid”
Finite Elements

RoBerT D. Cook* anDp Jaarar K. AL-ABpuriaf
University of Wisconsin, Madison, Wis.

Introduction

N this Note the “hybrid’”” element of Pian! is generalized to

arbitrary quadrilateral form. Four hybrids having con-

stant and linear stress distributions are considered. An ex-
ample problem is solved in order to compare the elements.
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Table 1 Matrix T for hybrids H1-H4

T H1 H2 H3 Ha T H1 H2 H3 H4
Th,; a a a a T1i44 0 0 0 (1}
Ta,; 0 c 0 € T4 b 0 b —e¢
Ta; b 0 b ¢ T5i44 a b a 0
T4,i .. (1} e 0 Ta;ii4 d —c b
Tsi oo b —d 0 Ts,0 44 L. a —e d
TG,:' e e —d TG,i+4 PPN . e —e
Tq.; . .. b T7.5+4 a

Hybrid elements considered are called H1, H2, H3, and H4.
The notation of Pian® is used where possible. Thus é = P§,
and the P matrices of the four hybrids are

1 0 0 1 Y 0 0 0
H1l =10 1 0LH2 =10 0 1 z 0
0 0 1 0 0 0 0 1

1 0 0 z 0
H3 = l:O 1 0 0 Y
0 0 1 -y -
1 x Y 0 0 0 0
H4 = |:O 0 0 1 z Y 0
0 -y 0 0 0 — 1

Formulation of Matrices

Consider an arbitrary quadrilateral of constant thickness ¢
whose corners are numbered counterclockwise 1-4. Matrix
T accounts for work done by boundary forces. Itsform isde-
termined by consideration of stress and displacement com-
ponents in coordinate directions ns, where s coincides with
the edge being treated, and the normal n makes a counter-
clockwise angle 8 with respect to the = axis (plate elements
have been similarly treated; see, e.g., Ref. 2). The analysis is
as follows. First, express ns nodal displacements, four for
each edge, in terms of nodal displacements in zy coordinates,

qQ =W g Wi = f1(6) ey
16X1 16X8 8X1
Next, require that ns displacements along each edge be linear
functions of s,
ul — Ll qI

) L' = fu(s, 1) @
8x1 8X16 16X1

where [ is the length of an edge. Next, express ns edge stresses
in terms of 3,

S=Z ¢ =ZPg,
8X1 8X3 3X1

Zi; = f3(0) 3)

In P, for example, along edge 1-2 we have x = 2, — ssinf;; =
@1 — s{@ — x2)/le. Finally, matrix T results from integra-~
tion of (ZP)TL'W = RTZL along the edges. Let

tyr — 9:)/2, 0 = t(s — x1)/2

= tyly; -+ yr) — vily: + ¥5)1/6 (4)
txila: + ;) — oz + 24)1/6

tHys(xw — x'i) + zi(ye — y) + 2@ — 2:)]/6

where 1, 7, k are cyclically permuted from 1-4 and ¢ = 7 — 1,

o QO R
i

Table 2 Times in milliseconds on CDC 3600 computer to
form stiffness matrix and to compute and print stresses.
Trace of stiffness matrix for square element with modulus

E = 1.0 and Poisson’s ratior = }

Property H1 H2 H3 H4 Il 4 T4

Formation 17 60 60 02 16 50 110
Stresses 28¢ 185 185 214 142 142 ..
Trace 3.00 3.67 3.18 3.75 3.00 4.00 4.13

¢ Stresses at one point only.
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k =7+ 1. Thus, elements of T for the hybrids may be listed
as in Table 1.

Formation of matrix H~* is trivial for hybrid H1. For hy-
brids H2-H4, linear and quadratic terms must be integrated
to produce H; this is done exactly by Gaussian quadrature
using four integration points. Use was made of efficiencies
suggested by Irons® for integration and manipulation of the
form PTNP. Direct formation of H using properties of plane
areas should be faster, but lacks the generality desirable for
further extension, e.g., to variable thickness elements.

Formation times for k are given in Table 2. The trace of k
is given for subsequent reference. Also given in Table 2 is
the time required for element stress computation, which
consists of reforming H™'T, postmultiplying by q, premulti-
plying by P for each element corner, and printing.

The grade 1 “isoparametric” quadrilateral® is a displace-
ment model competitive with the hybrids. Data is given for
this model in Table 2. Gaussian quadrature using one point
(I1) and four points (I4) is considered (the latter is exact
for a rectangular element). Finally Table 2 lists data for a
quadrilateral composed of four constant-strain triangles (T'4).

Numerical Example and Conelusions

An arbitrary plane structure composed of nonrectangular
elements (Fig. 1) was loaded by a uniformly distributed shear
7.y along edge CDE. Finite-element meshesof N = 1,2, 4, 8
and 16 were used.

Vertical deflections of point D for the several meshes and
elements are shown in Fig. 2. Validity of the hybrid formula-
tions is confirmed by comparison with displacement models
Il and 74. Results given by element T4 are not shown, as
they are practically identical to those given by element /4.
Excluding T4, traces of nonrectangular elements are ranked
in the same order seen in Table 2; hence, it appears that the
quality of a k matrix is not directly related to its trace, as has
been suggested.* One-element structures not shown in Fig. 2
were kinematically unstable.

Stresses plotted in Fig. 3 are averages of stresses along AB
in each pair of elements; e.g., along the lower quarter of AB
the plotted stress represents [(o. in el. 2)ss + (0, In
61. 3) A B] / 2.

Formulations H1 and I1 produce identical stiffness ma-
trices, regardless of element shape. Stresses calculated by
use of I1 are unsatisfactory in a coarse mesh, even though the
calculation of stresses from displacements involves no numeri-
cal integration; however (as expected?®) Il is satisfactory in a
fine mesh. Hybrid H1 seems preferable to both I'l and 74.
Hybrid H2 seems preferable to I4 in spite of the time dis-
advantage seen in Table 2. The additional stress modes in
H3 and H4 produce no advantage over H2, a conclusion in
agreement with remarks of Pian and Tong.?
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An Experimental Investigation of the
Buckling of Toroidal Shells

B. O. Aumrors,* L. H. SoBer,t axp A. R. HunTeR]
Lockheed Missiles & Space Company, Palo Alto, Calif.

Nomenclature
a = meridional radius of curvature (see Fig. 1)
b = distance between the center of the circular meridian and the
axis of revolution (see Fig. 1)
E = Young’s modulus
h = thickness of shell
p = uniform hydrostatic pressure loading

HEORETICAL results for the buckling of toroidal shells

under uniform external pressure are presented by Sobel and
Fliigge.! These results are in very good agreement with the
few available test results. However, these experimental re-
sults are for a rather slender torus (b/a = 8, see Fig. 1 for
notation). Therefore toroidal shells with a smaller value of
b/a were manufactured and tested. The dimensions of the
tested shells are & = 51in., ¢ = 2.5 in, and thickness A = 0.050
. For a meaningful comparison between theory and test, it
is important that the test specimen has a reasonably uniform
thickness distribution. It was believed that this could best
be achieved if the shells are manufactured by casting an
epoxy resin material. The toroidal shell was cast in two
halves which were later glued together. In this way exces-

Received June 13, 1969. This research was supported by the
Independent Research Program of Lockheed Missiles & Space
Company.

* Senior Staff Scientist, Aerospace Sciences Laboratory.
Member ATAA.

1 Research Scientist, Aerospace Sciences Laboratory. Mem-
ber ATAA.

T Research Scientist, Aerospace Sciences Laboratory.



